Bridging the divide in financial market forecasting: machine learners vs. financial economists

نویسندگان

  • Ming-Wei Hsu
  • Stefan Lessmann
  • Ming-Chien Sung
  • Tiejun Ma
  • Johnnie E. V. Johnson
چکیده

Financial time series forecasting is a popular application of machine learning methods. Previous studies report that advanced forecasting methods predict price changes in financial markets with high accuracy and that profit can be made trading on these predictions. However, financial economists point to the informational efficiency of financial markets, which questions price predictability and opportunities for profitable trading. The objective of the paper is to resolve this contradiction. To this end, we undertake an extensive forecasting simulation, based on data from thirty-four financial indices over six years. These simulations confirm that the best machine learning methods produce more accurate forecasts than the best econometric methods. We also examine the methodological factors that impact the predictive accuracy of machine learning forecasting experiments. The results suggest that the predictability of a financial market and the feasibility of profitable model-based trading are significantly influenced by the maturity of the market, the forecasting method employed, the horizon for which it generates predictions and the methodology used to assess the model and simulate model-based trading. We also find evidence against the informational value of indicators from the field of technical analysis. Overall, we confirm that advanced forecasting methods can be used to predict price changes in some financial markets and we discuss whether these results question the prevailing view in the financial economics literature that financial markets are efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Financial crisis and exchange market pressure In energy exporting countries: Fisher's discriminant function approach

Financial crises are unpredictable and threatening the economic stability of countries. Hence, policymakers are forced to adopt appropriate tactics to defuse and resolve crises. One of the indicators that helps policymakers and economists is the exchange market pressure. The purpose of this study is to examine the factors affecting the foreign exchange market pressure during 2008- 2009 financia...

متن کامل

THE WILLIAM DAVIDSON INSTITUTE AT THE UNIVERSITY OF MICHIGAN BUSINESS SCHOOL Bridging “the Great Divide”: Countering Financial Repression in Transition

The large and widening gap between economic performance in Eastern European transition economies and those of the former Soviet Union has been dubbed “the Great Divide” by Berglof and Bolton (2002). This paper provides a rationale for the gap based upon the concept of financial repression. The magnified effects of transition to the market can be attributed to the government manipulation of fina...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2016